Artigos - by dorcronica.blog.br

A assinatura cerebral para percepção da dor e sua modulação – Parte 1

A assinatura cerebral para percepção da dor – Parte 1

Graças à neuroimagem, hoje é sabido que vários fatores, sensoriais e não sensoriais, influenciam separadamente a percepção da dor. A primeira parte do artigo “A assinatura cerebral para a percepção da dor e sua modulação” comenta fatores – contexto, emoções, lesão e vias inibitórias descendentes – que influenciam a percepção da dor e também traça o cenário neuro-anatômico onde isso ocorre. O artigo foi dividido em cinco partes devido a sua extensão. As quatro partes restantes serão postadas nas semanas seguintes.

Autores: Irene Tracey e Patrick W. Mantyh

Parte 1

Introdução

Dor como um importante problema de saúde médica

A dor que persiste por mais de três meses é definida como crônica e, como tal, é um dos maiores problemas de saúde médica no mundo desenvolvido. Afeta aproximadamente 20% da população adulta, principalmente mulheres e idosos.1

Embora o manejo e o tratamento da dor aguda sejam razoavelmente bons, as necessidades dos pacientes com dor crônica não são atendidas, criando um enorme fardo emocional e financeiro para os pacientes, cuidadores e sociedade. Por ano, estima-se que o custo da dor crônica para a Europa seja de 200 bilhões de libras esterlinas e para os EUA mais de 150 bilhões de dólares. Melhorias em nossa capacidade de diagnosticar a dor crônica e desenvolver novos tratamentos são desesperadamente necessárias, mas para conseguir isso, precisamos de “leituras” robustas e menos subjetivas da experiência da dor.

Métodos inovadores, como neuroimagem molecular e de sistemas, que podem avaliar alterações no sistema nervoso central (SNC) de pacientes e relacionar esses achados à riqueza de informações de estudos em animais, têm grande potencial e promessa. De fato, as melhorias em nossa capacidade de identificar a extensão das alterações no SNC, devido à dor crônica, em animais e humanos fortaleceram o argumento para considerar a dor crônica como uma doença por si só. Os mecanismos que contribuem para a geração e manutenção de um estado de dor crônica são cada vez mais investigados e melhor compreendidos. Uma consequente mudança de mentalidade que trata a dor crônica como uma doença e não como um sintoma está acelerando consideravelmente os avanços nesse campo.

Amarrar este novo corpo de conhecimento de pacientes e normais com os extensos dados de animais sobre o processamento da dor no SNC é oportuno. Aspectos comuns sobre como a percepção da dor é mediada e modulada estão sendo identificados; este é o foco de nossa análise.

A dor como percepção

A dor é uma experiência consciente, uma interpretação da entrada nociceptiva influenciada por memórias, fatores emocionais, patológicos, genéticos e cognitivos. A dor resultante não está necessariamente relacionada linearmente com o impulso ou estímulo nociceptivo; nem é apenas para funções vitais de proteção. Isto é especialmente verdadeiro no estado de dor crônica. Além disso, a resposta comportamental de um sujeito a um evento doloroso é modificada de acordo com o que é apropriado ou possível em qualquer situação particular. A dor é, portanto, uma experiência altamente subjetiva, conforme ilustrado pela definição dada pela International Association for the Study of Pain2

“Uma experiência sensorial e emocional desagradável associada a dano tecidual real ou potencial, ou descrita em termos de tal dano.”

Por sua própria natureza, a dor é, portanto, difícil de avaliar, investigar, gerenciar e tratar. A Figura 13 ilustra a mistura de fatores que sabemos que influenciam as entradas nociceptivas para amplificar, atenuar e colorir a experiência da dor. Sabemos também de dados mais recentes como uma experiência dolorosa pode ocorrer sem uma entrada nociceptiva primária4, complicando ainda mais a história, mas talvez fornecendo uma explicação alternativa de como a dor pode surgir em casos clínicos difíceis em que a causa orgânica não é óbvia.

Figura 1

Esquema que ilustra os principais fatores que influenciam as entradas nociceptivas para afetar a percepção da dor

Esquema que ilustra os principais fatores que influenciam as entradas nociceptivas para afetar a percepção da dor

O que está claro é que muitos fatores que influenciam a percepção da dor são mediados centralmente, e nossa capacidade de desvendar e dissecar neuroanatomicamente sua contribuição só foi viável desde que as ferramentas de neuroimagem nos permitiram acesso não invasivo ao SNC humano. Determinar o equilíbrio entre influências periféricas versus centrais e verificar quais são devidas a influências patológicas versus emocionais ou cognitivas ajudará claramente nas decisões sobre o direcionamento dos tratamentos (ou seja, farmacológico, cirúrgico, cognitivo-comportamental ou reabilitação física).

Compreender como as influências comportamentais complexas, como ansiedade, depressão, estados de crença, e a cognição altera a experiência de dor em animais é difícil de avaliar devido à falta de paradigmas comportamentais sofisticados e dependência excessiva de medidas de limiar ou retirada. No entanto, uma ênfase maior está sendo colocada em medidas de comportamentos espontâneos de dor, bem como no desenvolvimento e utilização de modelos animais de dor que refletem mais claramente condições específicas de dor humana crônica.5

Além disso, os modelos de dor animal agora rotineiramente levam em consideração o histórico genético, idade, sexo e níveis de estresse do animal, pois estes demonstraram ter um impacto significativo no fenótipo de dor observado em animais e humanos.6

De fato, uma abordagem mais integrada para traduzir conhecimento bidirecionalmente entre estudos em humanos e animais já está se mostrando benéfica, como demonstrado recentemente na inesperada identificação do potencial papel central da GTP ciclohidrolase (GCH1), a enzima limitante da taxa para a síntese de tetrahidrobiopterina (BH4), como um modulador chave da dor neuropática e inflamatória periférica em modelos animais e humanos que sofrem de dor crônica.7

Neuroanatomia Básica do Processamento Central da Dor e a “Assinatura Cerebral” para a Percepção da Dor

Além do nociceptor periférico e do corno dorsal, a informação nociceptiva ascende ao tálamo no trato espinotalâmico contralateral (STT) e à medula e tronco encefálico através dos tratos espinorreticular (espinoparabraquial) e espinomesencefálico. Esses tratos servem a diferentes propósitos relacionados tanto à origem da lâmina no corno dorsal quanto ao destino final central.8

As projeções da coluna vertebral para o tronco encefálico são particularmente importantes para integrar a atividade nociceptiva com os processos homeostáticos, de excitação e autonômicos, além de fornecer um meio de transmitir indiretamente informações nociceptivas às regiões do prosencéfalo após o processamento do tronco cerebral. A capacidade das projeções para o tronco encefálico influenciarem diretamente a atividade da coluna e do prosencéfalo sugere claramente que essas vias desempenham um papel direto em afetar a experiência da dor; dados de animais, indivíduos saudáveis ​​e pacientes confirmam cada vez mais o papel central que o tronco encefálico desempenha na mediação de mudanças na percepção da dor.

As divisões funcionais e anatômicas do tálamo, o principal local de retransmissão de entradas nociceptivas para estruturas corticais e subcorticais, foram feitas com base em suas conexões com lâminas específicas da medula espinhal em várias espécies animais e em humanos.9. Os neurônios STT da lâmina I projetam-se amplamente para o núcleo ventral posterior (VP), a parte posterior do núcleo ventral medial (VMpo), o núcleo ventral posterior inferior (VPI) e a divisão ventral caudal do núcleo medial dorsal (MDvc). Evidências recentes, no entanto, questionam a projeção do STT da lâmina I para VP10.

Os axônios da lâmina V STT terminam em VP, VPI, núcleo ventral lateral e núcleos intralaminares. No entanto, o tálamo e suas conexões espinhais e supraespinhais ainda são debatidos em termos de processamento nociceptivo em humanos. No entanto, estudos de imagem de alta resolução acoplados a investigações cirúrgicas em humanos confirmaram a relevância dos núcleos identificados até o momento a partir de estudos em animais.11. Como um local crítico de retransmissão, talvez não seja surpreendente que o tálamo esteja envolvido na dor crônica. A diminuição do fluxo sanguíneo talâmico contralateral ao local da dor em pacientes com câncer foi demonstrada.12, e em pacientes que desenvolvem dor após lesões no sistema nervoso periférico ou central, ocorre hipoperfusão talâmica. É claro que tal hipoperfusão pode refletir tanto uma diminuição da atividade neural quanto uma desaferentação.

Um estudo recente de um paciente com infarto medular esquerdo (síndrome de Wallenberg) tentou distinguir entre essas possibilidades.13 Neste paciente, déficits sensoriais extensos do lado direito foram acompanhados de dor facial do lado esquerdo, e uma PET scan revelou que a redução do fluxo sanguíneo ocorreu no tálamo direito, contralateral à área da dor. A repetição da varredura após o alívio da dor proporcionado pela estimulação do córtex motor mostrou a restauração da perfusão talâmica. Isso sugere que a hipoperfusão talâmica de fato reflete o estado de dor, embora possa não ser fisiopatológico per se. Futuras áreas de investigação devem incluir estimulação cerebral profunda direcionada em pacientes, informada por mapas de conectividade de tractografia de difusão de substância branca, para melhor determinar o papel de núcleos talâmicos específicos na percepção da dor e sua modulação. 

A Matriz da Dor

Como a dor é uma experiência subjetiva complexa e multifatorial, uma grande rede cerebral distribuída é subsequentemente acessada durante o processamento nociceptivo.14. Melzack a descreveu pela primeira vez como a “neuromatriz” da dor, mas agora é mais comumente chamada de “matriz da dor”; de forma simplista, pode ser pensado como tendo componentes neuroanatômicos laterais (sensorial-discriminatórios) e mediais (afetivo-cognitivo-avaliativos).15

No entanto, como as diferentes regiões do cérebro desempenham um papel mais ou menos ativo, dependendo da interação precisa dos fatores envolvidos na influência da percepção da dor (por exemplo, cognição, humor, lesão e assim por diante), o que compreende a matriz da dor não é inequivocamente definido, e a literatura nem sempre é consistente em relação às regiões a serem incluídas. Em nossa opinião, para que a matriz da dor mantenha sua utilidade, ela precisa ser vista não como uma entidade autônoma, mas sim como um substrato que é significativa e ativamente modulado por uma variedade de regiões cerebrais, e é essa interação que em grande parte determina a experiência da dor.

Uma recente meta-análise de dados humanos de estudos de tomografia por emissão de pósitrons (PET), ressonância magnética funcional (fMRI), eletroencefalografia (EEG) e magnetoencefalografia (MEG) fornece clareza sobre as regiões mais comuns encontradas ativas durante uma experiência de dor aguda.16. Essas áreas incluem: córtices somatossensorial primário e secundário, insular, cingulado anterior e pré-frontal, bem como o tálamo (Figura 217). Isso não quer dizer que essas áreas sejam a rede central fundamental do processamento nociceptivo humano (e se ablação curaria toda a dor), embora estudos recentes investigando analgesia induzida farmacologicamente mostrem efeitos predominantes nessas regiões do cérebro.18

Outras regiões como gânglios da base, cerebelo, amígdala, hipocampo e áreas dentro dos córtices parietal e temporal também podem ser ativas dependendo do conjunto particular de circunstâncias para aquele indivíduo (Figura 219). Talvez precisemos avançar em direção a uma “assinatura de dor” neural individualizada, em vez de forçar essa experiência complexa e subjetiva às restrições de uma matriz de dor neuroanatômica rígida.20

Isso é especialmente verdadeiro quando se considera a representação neural da dor crônica, contínua ou espontânea em pacientes, algo que foi estudado apenas recentemente e parece não ser representado necessariamente pelo conceito convencional de matriz de dor21. E, claro, os dados que mostram a atividade de quase toda a matriz da dor sem uma entrada nociceptiva durante a hipnose e as manipulações de empatia apoiam a noção de que é hora de reconsiderar como definimos o processamento central da dor em relação à origem da entrada e percepção e significado resultantes.22

Isso não quer dizer que a dor experimentada sem uma entrada nociceptiva (às vezes chamada de dor psicogênica) seja menos real do que a dor definida “fisicamente”; de fato, estudos de neuroimagem destacaram a realidade fisiológica de tais experiências devido à extensa ativação neural que ocorre. Em vez disso, é dizer que ainda não temos uma assinatura central que reflita inequivocamente as entradas nociceptivas periféricas. Estudos usando potenciais evocados por laser (LEPs) e MEG que se concentram mais especificamente em aspectos temporais do processamento nociceptivo, dentro de regiões do cérebro espacialmente menos bem definidas, fornecem sinais que refletem os componentes exógenos (ou seja, entrada nociceptiva direta rápida representada pela operculoinsula e/ou região S2) e componentes endógenos (ou seja, sinal integrado e convoluído posterior representado pelo ACC).23

Grande ênfase, portanto, tem sido dada à representação espacial ou temporal do processamento nociceptivo dentro de regiões do cérebro funcionalmente definidas, sem considerar como sua ativação em conjunto causa uma percepção de dor. A percepção da dor, semelhante a muitas experiências complexas, emerge do fluxo e integração de informações entre áreas específicas do cérebro; é necessária maior ênfase na compreensão da integração temporal entre essas regiões do cérebro espacialmente definidas e imagens multimodais humanas, bem como estudos em animais, podem fornecer a solução.

Figura 2

Neuroanatomia do Processamento da Dor

Em parte, o foco na matriz de dor bastante simplificada é uma casualidade do foco intenso e do sucesso que os pesquisadores da dor tiveram na compreensão da biologia molecular e celular dos neurônios sensoriais aferentes primários e suas interações na medula espinhal.24

Nos últimos 20 anos, esse sucesso resultou em uma “migração” em grande escala de pesquisadores da dor estudando o envolvimento de centros superiores do cérebro (córtex cerebral, tálamo, amígdala) para focar no neurônio sensorial e na medula espinhal. No entanto, com o advento e o sucesso de técnicas de neuroimagem não invasivas em humanos, uma ênfase maior em experimentos com animais deve ser agora colocada em como os neurônios sensoriais, a medula espinhal e os centros superiores do cérebro agem em conjunto, se quisermos realmente começar a entender como a dor é percebida em nível sistêmico. Combinando dados de estudos de imagem humana com neuroimagem, celular, molecular, e estudos comportamentais em animais tem o potencial de fazer progressos semelhantes na compreensão de como os centros superiores do cérebro estão envolvidos na percepção da dor, como foi feito na compreensão da neurobiologia dos nociceptores aferentes primários.

A segunda parte deste artigo irá tratar da Influência do Contexto na Dor.

Tradução Livre de “The Cerebral Signature for Pain Perception and Its Modulation”, de Irene Tracey e Patrick W. Mantyhl, publicado em Julho 2007

Ler a Parte 2


Referências:

  • Albe-Fessard, D., Berkley, K.J., Kruger, L., Ralston, H.J., 3rd, and Willis, W.D., Jr. (1985). Diencephalic mechanisms of pain sensation. Brain Res. 356, 217–296.
  • Altier, N., and Stewart, J. (1999). The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 65, 2269–2287.
  • Apkarian, A.V., Thomas, P.S., Krauss, B.R., and Szeverenyi, N.M. (2001). Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci. Lett. 311, 193–197.
  • Apkarian, A.V., Sosa, Y., Krauss, B.R., Thomas, P.S., Fredrickson, B.E., Levy, R.E., Harden, R.N., and Chialvo, D.R. (2004a). Chronic pain patients are impaired on an emotional decision-making task. Pain 108, 129–136.
  • Apkarian, A.V., Sosa, Y., Sonty, S., Levy, R.M., Harden, R.N., Parrish, T.B., and Gitelman, D.R. (2004b). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 10410–10415.
  • Apkarian, A.V., Bushnell, M.C., Treede, R.D., and Zubieta, J.K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484.
  • Baliki, M.N., Chialvo, D.R., Geha, P.Y., Levy, R.M., Harden, R.N., Parrish, T.B., and Apkarian, A.V. (2006). Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 26, 12165–12173.
  • Banati, R.B. (2002). Visualising microglial activation in vivo. Glia 40, 206–217.
  • Bantick, S.J., Wise, R.G., Ploghaus, A., Clare, S., Smith, S.M., and Tracey, I. (2002). Imaging how attention modulates pain in humans using functional MRI. Brain 125, 310–319.
  • Basbaum, A.I., and Fields, H.L. (1984). Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7, 309–338.
  • Becerra, L., Morris, S., Bazes, S., Gostic, R., Sherman, S., Gostic, J., Pendse, G., Moulton, E., Scrivani, S., Keith, D., et al. (2006). Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J. Neurosci. 26, 10646–10657.
  • Behrens, T.E., Johansen-Berg, H., Woolrich, M.W., Smith, S.M., Wheeler-Kingshott, C.A., Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K., Ciccarelli, O., et al. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–757.
  • Benedetti, F., Mayberg, H.S., Wager, T.D., Stohler, C.S., and Zubieta, J.K. (2005). Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402.
  • Bentley, D.E., Watson, A., Treede, R.D., Barrett, G., Youell, P.D.,Kulkarni, B., and Jones, A.K. (2004). Differential effects on the laserevoked potential of selectively attending to pain localisation versuspain unpleasantness. Clin. Neurophysiol. 115, 1846–1856.
  • Blackburn-Munro, G. (2004). Pain-like behaviours in animals—howhuman are they? Trends Pharmacol. Sci. 25, 299–305.
  • Boccalon, S., Scaggiante, B., and Perissin, L. (2006). Anxiety stressand nociceptive responses in mice. Life Sci. 78, 1225–1230.
  • Bonnemain, B. (1998). Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J. Drug Target. 6, 167–174.
  • Brefel-Courbon, C., Payoux, P., Thalamas, C., Ory, F., Quelven, I., Chollet, F., Montastruc, J.L., and Rascol, O. (2005). Effect of levodopa on pain threshold in Parkinson’s disease: a clinical and positron emission tomography study. Mov. Disord. 20, 1557–1563.
  • Breivik, H., Collett, B., Ventafridda, V., Cohen, R., and Gallacher, D. (2006). Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain 10, 287–333.
  • Brooks, J., Jenkinson, M., Beckmann, C.F., Wise, R., Clare, S., Schweinhardt, P., Wilson, G., and Tracey, I. (2006). Non-invasive functional imaging of the human spinal cord. 5th Congress of the European Federation of IASP, 1819.
  • Bulte, J.W., and Frank, J.A. (2000). Imaging macrophage activity in the brain by using ultrasmall particles of iron oxide. AJNR Am. J. Neuroradiol. 21, 1767–1768.
  • Casey, K.L., Svensson, P., Morrow, T.J., Raz, J., Jone, C., and Minoshima, S. (2000). Selective opiate modulation of nociceptive processing in the human brain. J. Neurophysiol. 84, 525–533.
  • Castren, E. (2005). Is mood chemistry? Nat. Rev. Neurosci. 6, 241–246. Coghill, R.C., McHaffie, J.G., and Yen, Y.F. (2003). Neural correlates of interindividual differences in the subjective experience of pain. Proc. Natl. Acad. Sci. USA 100, 8538–8542.
  • Colloca, L., and Benedetti, F. (2005). Placebos and painkillers: is mind as real as matter? Nat. Rev. Neurosci. 6, 545–552.
  • Craft, R.M., Mogil, J.S., and Aloisi, A.M. (2004). Sex differences in pain and analgesia: the role of gonadal hormones. Eur. J. Pain 8, 397–411.
  • Craig, A.D. (2003a). Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13, 500–505.
  • Craig, A.D. (2003b). Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci. 26, 1–30.
  • Craig, A.D. (2006). Retrograde analyses of spinothalamic projections in the macaque monkey: input to ventral posterior nuclei. J. Comp. Neurol. 499, 965–978.
  • Craig, A.D., Reiman, E.M., Evans, A., and Bushnell, M.C. (1996). Functional imaging of an illusion of pain. Nature 384, 258–260.
  • Craig, A.D., Chen, K., Bandy, D., and Reiman, E.M. (2000). Thermosensory activation of insular cortex. Nat. Neurosci. 3, 184–190.
  • Critchley, H.D., Wiens, S., Rotshtein, P., Ohman, A., and Dolan, R.J. (2004). Neural systems supporting interoceptive awareness. Nat. Neurosci. 7, 189–195.
  • Crombez, G., Van Damme, S., and Eccleston, C. (2005). Hypervigilance to pain: an experimental and clinical analysis. Pain 116, 4–7.
  • da Silva Torres, I.L., Cucco, S.N., Bassani, M., Duarte, M.S., Silveira, P.P., Vasconcellos, A.P., Tabajara, A.S., Dantas, G., Fontella, F.U., Dalmaz, C., and Ferreira, M.B. (2003). Long-lasting delayed hyperalgesia after chronic restraint stress in rats-effect of morphine administration. Neurosci. Res. 45, 277–283.
  • deCharms, R.C., Maeda, F., Glover, G.H., Ludlow, D., Pauly, J.M., Soneji, D., Gabrieli, J.D., and Mackey, S.C. (2005). Control over brain activation and pain learned by using real-time functional MRI. Proc. Natl. Acad. Sci. USA 102, 18626–18631.
  • Derbyshire, S.W., Whalley, M.G., Stenger, V.A., and Oakley, D.A. (2004). Cerebral activation during hypnotically induced and imagined pain. Neuroimage 23, 392–401.
  • Di Piero, V., Jones, A.K., Iannotti, F., Powell, M., Perani, D., Lenzi, G.L., and Frackowiak, R.S. (1991). Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy. Pain 46, 9–12.
  • Dolan, R.J. (2002). Emotion, cognition, and behavior. Science 298, 1191–1194.
  • Dostrovsky, J.O., and Craig, A.D. (2006). Ascending projection systems. In Textbook of Pain, 5th Edition, S.B. McMahon and M. Koltzenburg, eds. (London: Elsevier Churchill Livingstone), pp. 187–203.
  • Dunckley, P., Wise, R.G., Fairhurst, M., Hobden, P., Aziz, Q., Chang, L., and Tracey, I. (2005). A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J. Neurosci. 25, 7333–7341.
  • Edwards, R.R. (2005). Individual differences in endogenous pain modulation as a risk factor for chronic pain. Neurology 65, 437–443.
  • Edwards, R., Bingham, C.O., 3rd, Bathon, J., and Haythornthwaite, J.A. (2006). Catastrophizing and pain in arthritis, fibromyalgia, and other rheumatic diseases. Arthritis Rheum. 15, 325–332.
  • Eisenberger, N.I., Lieberman, M.D., and Williams, K.D. (2003). Does rejection hurt? An FMRI study of social exclusion. Science 302, 290–292.
  • Ertas, M., Sagduyu, A., Arac, N., Uludag, B., and Ertekin, C. (1998). Use of levodopa to relieve pain from painful symmetrical diabetic polyneuropathy. Pain 75, 257–259.
  • Fairhurst, M., Wiech, K., Dunckley, P., and Tracey, I. (2007). Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101–110.
  • Fields, H.L., and Basbaum, A.I. (2005). Central nervous system mechanisms of pain modulation. In Textbook of Pain, R. Melzack and P. Wall, eds. (London: Churchill Livingstone), pp. 125–142.
  • Garcia-Larrea, L., Frot, M., and Valeriani, M. (2003). Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol. Clin. 33, 279–292.
  • Garcia-Larrea, L., Maarrawi, J., Peyron, R., Costes, N., Mertens, P., Magnin, M., and Laurent, B. (2006). On the relation between sensory deafferentation, pain and thalamic activity in Wallenberg’s syndrome: a PET-scan study before and after motor cortex stimulation. Eur. J. Pain 10, 677–688.
  • Gavva, N.R., Bannon, A.W., Surapaneni, S., Hovland, D.N., Jr., Lehto, S.G., Gore, A., Juan, T., Deng, H., Han, B., Klionsky, L., et al. (2007).
  • The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J. Neurosci. 27, 3366–3374.
  • Gebhart, G.F. (2004). Descending modulation of pain. Neurosci. Biobehav. Rev. 27, 729–737.
  • Geha, P.Y., Baliki, M.N., Chialvo, D.R., Harden, R.N., Paice, J.A., and Apkarian, A.V. (2007). Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128, 88–100.
  • Giesecke, T., Gracely, R.H., Williams, D.A., Geisser, M.E., Petzke, F.W., and Clauw, D.J. (2005). The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum. 52, 1577–1584.
  • Goadsby, P.J. (2007). Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol. Med. 13, 39–44.
  • Gracely, R.H., Geisser, M.E., Giesecke, T., Grant, M.A., Petzke, F., Williams, D.A., and Clauw, D.J. (2004). Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127, 835–843.
  • Grachev, I.D., Fredrickson, B.E., and Apkarian, A.V. (2000). Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 89, 7–18.
  • Hadjipavlou, G., Dunckley, P., Behrens, T.E., and Tracey, I. (2006). Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain 123, 169–178.
  • Hagbarth, K.E., and Kerr, D.I. (1954). Central influences on spinal afferent conduction. J. Neurophysiol. 17, 295–307.
  • Hagelberg, N., Jaaskelainen, S.K., Martikainen, I.K., Mansikka, H., Forssell, H., Scheinin, H., Hietala, J., and Pertovaara, A. (2004). Striatal dopamine D2 receptors in modulation of pain in humans: a review. Eur. J. Pharmacol. 500, 187–192.
  • Haour, F. (2005). Mechanisms of the placebo effect and of conditioning. Neuroimmunomodulation 12, 195–200.
  • Hawes, R.H., Xiong, Q., Waxman, I., Chang, K.J., Evans, D.B., and Abbruzzese, J.L. (2000). A multispecialty approach to the diagnosis and management of pancreatic cancer. Am. J. Gastroenterol. 95, 17–31.
  • Hobson, A.R., Furlong, P.L., Worthen, S.F., Hillebrand, A., Barnes, G.R., Singh, K.D., and Aziz, Q. (2005). Real-time imaging of human cortical activity evoked by painful esophageal stimulation. Gastroenterology 128, 610–619.
  • Hsieh, J.C., Stone-Elander, S., and Ingvar, M. (1999). Anticipatory coping of pain expressed in the human anterior cingulate cortex: a positron emission tomography study. Neurosci. Lett. 262, 61–64.
  • Iannetti, G.D., Zambreanu, L., Cruccu, G., and Tracey, I. (2005a). Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience 131, 199–208.
  • Iannetti, G.D., Zambreanu, L., Wise, R.G., Buchanan, T.J., Huggins, J.P., Smart, T.S., Vennart, W., and Tracey, I. (2005b). Pharmacological
  • modulation of pain-related brain activity during normal and central sensitization states in humans. Proc. Natl. Acad. Sci. USA 102, 18195–18200.
  • Johansen-Berg, H., and Behrens, T.E. (2006). Just pretty pictures? What diffusion tractography can add in clinical neuroscience. Curr. Opin. Neurol. 19, 379–385.
  • Jones, A.K., Cunningham, V.J., Ha-Kawa, S., Fujiwara, T., Luthra, S.K.,
  • Silva, S., Derbyshire, S., and Jones, T. (1994). Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br. J. Rheumatol. 33, 909–916.
  • Jones, A.K., Kitchen, N.D., Watabe, H., Cunningham, V.J., Jones, T., Luthra, S.K., and Thomas, D.G. (1999). Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J. Cereb. Blood Flow Metab. 19, 803–808.
  • Jones, A.K., Watabe, H., Cunningham, V.J., and Jones, T. (2004). Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur. J. Pain 8, 479–485.
  • Julius, D., and Basbaum, A.I. (2001). Molecular mechanisms of nociception. Nature 413, 203–210.
  • Kalisch, R., Wiech, K., Critchley, H.D., and Dolan, R.J. (2006). Levels of appraisal: a medial prefrontal role in high-level appraisal of emotional material. Neuroimage 30, 1458–1466.
  • Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nat. Rev. Neurosci. 4, 469–480.
  • Legrain, V., Guerit, J.M., Bruyer, R., and Plaghki, L. (2002). Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain 99, 21–39.
  • Levine, J.D., Gordon, N.C., Smith, R., and Fields, H.L. (1982). Postoperative pain: effect of extent of injury and attention. Brain Res. 234, 500–504
  • Lindsay, T.H., Jonas, B.M., Sevcik, M.A., Kubota, K., Halvorson, K.G., Ghilardi, J.R., Kuskowski, M.A., Stelow, E.B., Mukherjee, P., Gendler, S.J., et al. (2005). Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight and disease progression. Pain 119, 233–246.
  • Lorenz, J., Cross, D., Minoshima, S., Morrow, T., Paulson, P., and Casey, K. (2002). A unique representation of heat allodynia in the human brain. Neuron 35, 383–393.
  • Lorenz, J., Minoshima, S., and Casey, K.L. (2003). Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126, 1079–1091.
  • Maieron, M., Iannetti, G.D., Bodurka, J., Bodurka, I., Tracey, I., and Bandettini, C.A. (2007). Functional responses in the human spinal cord during willed motor actions: evidence for side-and rate-dependent activity. J. Neurosci. 27, 4182–4190.
  • Mainero, C., Zhang, W.T., Kumar, A., Rosen, B.R., and Sorensen, A.G. (2007). Mapping the spinal and supraspinal pathways of dynamic mechanical allodynia in the human trigeminal system using cardiac-gated fMRI. Neuroimage 35, 1201–1210.
  • Mantyh, P.W. (2006). Cancer pain and its impact on diagnosis, survival and quality of life. Nat. Rev. Neurosci. 7, 797–809.
  • Mantyh, P.W., Clohisy, D.R., Koltzenburg, M., and Hunt, S.P. (2002). Molecular mechanisms of cancer pain. Nat. Rev. Cancer 2, 201–209.
  • Mayer, E.A., Berman, S., Suyenobu, B., Labus, J., Mandelkern, M.A., Naliboff, B.D., and Chang, L. (2005). Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115, 398–409.
  • Melzack, R. (1999). From the gate to the neuromatrix. Pain Suppl. 6, S121–S126.
  • Merksey, H., and Bogduk, N. (1994). Classification of Chronic Pain (Seattle: IASP Press).
  • Miron, D., Duncan, G.H., and Bushnell, M.C. (1989). Effects of attention on the intensity and unpleasantness of thermal pain. Pain 39, 345–352.
  • Mogil, J.S. (1999). The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc. Natl. Acad. Sci. USA 96, 7744–7751.
  • Mogil, J.S., Richards, S.P., O’Toole, L.A., Helms, M.L., Mitchell, S.R., Kest, B., and Belknap, J.K. (1997). Identification of a sex-specific quantitative trait locus mediating nonopioid stress-induced analgesia in female mice. J. Neurosci. 17, 7995–8002.
  • Mogil, J.S., Ritchie, J., Sotocinal, S.G., Smith, S.B., Croteau, S., Levitin, D.J., and Naumova, A.K. (2006). Screening for pain phenotypes: analysis of three congenic mouse strains on a battery of nine nociceptive assays. Pain 126, 24–34.
  • Montes, C., Magnin, M., Maarrawi, J., Frot, M., Convers, P., Mauguiere, F., and Garcia-Larrea, L. (2005). Thalamic thermo-algesic transmission: ventral posterior (VP) complex versus VMpo in the light of a thalamic infarct with central pain. Pain 113, 223–232.
  • Morris, R., Cheunsuang, O., Stewart, A., and Maxwell, D. (2004). Spinal dorsal horn neurone targets for nociceptive primary afferents: do single neurone morphological characteristics suggest how nociceptive information is processed at the spinal level. Brain Res. Brain Res. Rev. 46, 173–190.
  • Naliboff, B.D., Berman, S., Suyenobu, B., Labus, J.S., Chang, L., Stains, J., Mandelkern, M.A., and Mayer, E.A. (2006). Longitudinal change in perceptual and brain activation response to visceral stimuli in irritable bowel syndrome patients. Gastroenterology 131, 352–365.
  • Napadow, V., Kettner, N., Liu, J., Li, M., Kwong, K.K., Vangel, M., Makris, N., Audette, J., and Hui, K.K. (2007). Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130, 254–266.
  • Neugebauer, V., Li, W., Bird, G.C., and Han, J.S. (2004). The amygdala and persistent pain. Neuroscientist 10, 221–234.
  • Ohara, S., Crone, N.E., Weiss, N., Treede, R.D., and Lenz, F.A. (2004a). Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 110, 318–328.
  • Ohara, S., Crone, N.E., Weiss, N., and Lenz, F.A. (2004b). Attention to a painful cutaneous laser stimulus modulates electrocorticographic event-related desynchronization in humans. Clin. Neurophysiol. 115, 1641–1652.
  • Ohara, S., Crone, N.E., Weiss, N., Vogel, H., Treede, R.D., and Lenz, F.A. (2004c). Attention to pain is processed at multiple cortical sites in man. Experimental brain research. Experimentelle Hirnforschung 156, 513–517.
  • Paulus, M.P., and Stein, M.B. (2006). An insular view of anxiety. Biol. Psychiatry 60, 383–387.
  • Petrovic, P., Petersson, K.M., Ghatan, P.H., Stone-Elander, S., and Ingvar, M. (2000). Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85, 19–30.
  • Petrovic, P., Kalso, E., Petersson, K.M., and Ingvar, M. (2002). Placebo and opioid analgesia–imaging a shared neuronal network. Science 295, 1737–1740.
  • Peyron, R., Garcia-Larrea, L., Gregoire, M.C., Costes, N., Convers, P., Lavenne, F., Mauguiere, F., Michel, D., and Laurent, B. (1999). Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122, 1765–1780.
  • Phillips, M.L., Gregory, L.J., Cullen, S., Coen, S., Ng, V., Andrew, C., Giampietro, V., Bullmore, E., Zelaya, F., Amaro, E., et al. (2003). The effect of negative emotional context on neural and behavioural responses to oesophageal stimulation. Brain 126, 669–684.
  • Ploghaus, A., Tracey, I., Gati, J.S., Clare, S., Menon, R.S., Matthews, P.M., and Rawlins, J.N. (1999). Dissociating pain from its anticipation in the human brain. Science 284, 1979–1981.
  • Ploghaus, A., Tracey, I., Clare, S., Gati, J.S., Rawlins, J.N., and Matthews, P.M. (2000). Learning about pain: the neural substrate of the prediction error for aversive events. Proc. Natl. Acad. Sci. USA 97, 9281–9286.
  • Ploghaus, A., Narain, C., Beckmann, C.F., Clare, S., Bantick, S., Wise, R., Matthews, P.M., Rawlins, J.N., and Tracey, I. (2001). Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci. 21, 9896–9903.
  • Porreca, F., Ossipov, M.H., and Gebhart, G.F. (2002). Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325.
  • Porro, C.A., Baraldi, P., Pagnoni, G., Serafini, M., Facchin, P., Maieron, M., and Nichelli, P. (2002). Does anticipation of pain affect cortical nociceptive systems? J. Neurosci. 22, 3206–3214.
  • Porro, C.A., Cettolo, V., Francescato, M.P., and Baraldi, P. (2003). Functional activity mapping of the mesial hemispheric wall during anticipation of pain. Neuroimage 19, 1738–1747.
  • Pralong, E., Pollo, C., Bloch, J., Villemure, J.G., Daniel, R.T., Tetreault, M.H., and Debatisse, D. (2004). Recording of ventral posterior lateral thalamus neuron response to contact heat evoked potential in patient with neurogenic pain. Neurosci. Lett. 367, 332–335.
  • Price, D.D., Fillingim, R.B., and Robinson, M.E. (2006). Placebo analgesia: friend or foe? Curr. Rheumatol. Rep. 8, 418–424.
  • Price, D.D., Craggs, J., Verne, G.N., Perlstein, W.M., and Robinson, M.E. (2007). Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain 127, 63–72.
  • Raij, T.T., Numminen, J., Narvanen, S., Hiltunen, J., and Hari, R. (2005). Brain correlates of subjective reality of physically and psychologically induced pain. Proc. Natl. Acad. Sci. USA 102, 2147–2151.
  • Rainville, P., Duncan, G.H., Price, D.D., Carrier, B., and Bushnell, M.C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971.
  • Ren, K., and Dubner, R. (2002). Descending modulation in persistent pain: an update. Pain 100, 1–6.
  • Reynolds, D.V. (1969). Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164, 444–445.
  • Ridderinkhof, K.R., van den Wildenberg, W.P., Segalowitz, S.J., and Carter, C.S. (2004). Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 56, 129–140.
  • Rogers, R., Wise, R.G., Painter, D.J., Longe, S.E., and Tracey, I. (2004). An investigation to dissociate the analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. Anesthesiology 100, 292–301.
  • Romanelli, P., Esposito, V., and Adler, J. (2004). Ablative procedures for chronic pain. Neurosurg. Clin. N. Am. 15, 335–342.
  • Rushworth, M.F., Buckley, M.J., Behrens, T.E., Walton, M.E., and Bannerman, D.M. (2007). Functional organization of the medial frontal cortex. Curr. Opin. Neurobiol. 17, 220–227.
  • Rushworth, M.F., Kennerley, S.W., and Walton, M.E. (2005). Cognitive neuroscience: Resolving conflict in and over the medial frontal cortex. Curr. Biol. 15, R54–R56.
  • Rushworth, M.F., Walton, M.E., Kennerley, S.W., and Bannerman, D.M. (2004). Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8, 410–417.
  • Sakagami, M., and Pan, X. (2007). Functional role of the ventrolateral prefrontal cortex in decision making. Curr. Opin. Neurobiol. 17, 228–233.
  • Sandrini, G., Rossi, P., Milanov, I., Serrao, M., Cecchini, A.P., and Nappi, G. (2006). Abnormal modulatory influence of diffuse noxious inhibitory controls in migraine and chronic tension-type headache patients. Cephalalgia 26, 782–789.
  • Scheggi, S., Leggio, B., Masi, F., Grappi, S., Gambarana, C., Nanni, G., Rauggi, R., and De Montis, M.G. (2002). Selective modifications in the nucleus accumbens of dopamine synaptic transmission in rats exposed to chronic stress. J. Neurochem. 83, 895–903.
  • Schmidt, B.L., Tambeli, C.H., Barletta, J., Luo, L., Green, P., Levine, J.D., and Gear, R.W. (2002). Altered nucleus accumbens circuitry mediates pain-induced antinociception in morphine-tolerant rats. J. Neurosci. 22, 6773–6780.
  • Schmidt-Wilcke, T., Leinisch, E., Straube, A., Kampfe, N., Draganski, B., Diener, H.C., Bogdahn, U., and May, A. (2005). Gray matter decrease in patients with chronic tension type headache. Neurology 65, 1483–1486.
  • Schwei, M.J., Honore, P., Rogers, S.D., Salak-Johnson, J.L., Finke, M.P., Ramnaraine, M.L., Clohisy, D.R., and Mantyh, P.W. (1999). Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J. Neurosci. 19, 10886–10897.
  • Schweinhardt, P., Glynn, C., Brooks, J., McQuay, H., Jack, T., Chessell, I., Bountra, C., and Tracey, I. (2006). An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32, 256–265.
  • Scott, D.J., Heitzeg, M.M., Koeppe, R.A., Stohler, C.S., and Zubieta, J.K. (2006). Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci. 26, 10789–10795.
  • Scott, D.J., Stohler, C.S., Egnatuk, C.M., Wang, H., Koeppe, R.A., and Zubieta, J.K. (2007). Individual differences in reward processing explain placebo-induced expectations and effects. Neuron 55, 325–336.
  • Seghier, M.L., Lazeyras, F., Vuilleumier, P., Schnider, A., and Carota, A. (2005). Functional magnetic resonance imaging and diffusion tensor imaging in a case of central poststroke pain. J. Pain 6, 208–212.
  • Seifert, F., and Maihofner, C. (2007). Representation of cold allodynia in the human brain–a functional MRI study. Neuroimage 15, 1168–1180.
  • Sevcik, M.A., Jonas, B.M., Lindsay, T.H., Halvorson, K.G., Ghilardi, J.R., Kuskowski, M.A., Mukherjee, P., Maggio, J.E., and Mantyh, P.W. (2006). Endogenous opioids inhibit early-stage pancreatic pain in a mouse model of pancreatic cancer. Gastroenterology 131, 900-910.
  • Seymour, B., Daw, N., Dayan, P., Singer, T., and Dolan, R. (2007). Differential encoding of losses and gains in the human striatum. J. Neurosci. 27, 4826–4831.
  • Sherrington, C.S. (1906). The Integrative Action of the Nervous System (New Haven, CT: Yale University Press).
  • Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R.J., and Frith, C.D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157–1162.
  • Smith, Y.R., Stohler, C.S., Nichols, T.E., Bueller, J.A., Koeppe, R.A., and Zubieta, J.K. (2006). Pronociceptive and antinociceptive effects of estradiol through endogenous opioid neurotransmission in women. J. Neurosci. 26, 5777–5785.
  • Song, G.H., Venkatraman, V., Ho, K.Y., Chee, M.W., Yeoh, K.G., and Wilder-Smith, C.H. (2006). Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 126, 79–90.
  • Sullivan, M.J., Thorn, B., Haythornthwaite, J.A., Keefe, F., Martin, M., Bradley, L.A., and Lefebvre, J.C. (2001). Theoretical perspectives on the relation between catastrophizing and pain. Clin. J. Pain 17, 52–64.
  • Suzuki, R., Rygh, L.J., and Dickenson, A.H. (2004). Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol. Sci. 25, 613–617.
  • Taub, A. (1973). Relief of postherpetic neuralgia with psychotropic drugs. J. Neurosurg. 39, 235–239.
  • Tegeder, I., Costigan, M., Griffin, R.S., Abele, A., Belfer, I., Schmidt, H., Ehnert, C., Nejim, J., Marian, C., Scholz, J., et al. (2006). GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12, 1269–1277.
  • Tracey, I. (2005a). Functional connectivity and pain: how effectively connected is your brain? Pain 116, 173–174.
  • Tracey, I. (2005b). Nociceptive processing in the human brain. Curr. Opin. Neurobiol. 15, 478–487.
  • Tracey, I., and Dunckley, P. (2004). Importance of anti- and pro-nociceptive mechanisms in human disease. Gut 53, 1553–1555.
  • Tracey, I., and Iannetti, G.D. (2006). Brainstem functional imaging in humans. Suppl. Clin. Neurophysiol. 58, 52–67.
  • Tracey, I., Ploghaus, A., Gati, J.S., Clare, S., Smith, S., Menon, R.S., and Matthews, P.M. (2002). Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci. 22, 2748–2752.
  • Valet, M., Sprenger, T., Boecker, H., Willoch, F., Rummeny, E., Conrad, B., Erhard, P., and Tolle, T.R. (2004). Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—an fMRI analysis. Pain 109, 399–408.
  • Vanegas, H., and Schaible, H.G. (2004). Descending control of persistent pain: inhibitory or facilitatory? Brain Res. Brain Res. Rev. 46, 295–309.
  • Villemure, C., and Bushnell, M.C. (2002). Cognitive modulation of pain: how do attention and emotion influence pain processing? Pain 95, 195–199.
  • von Spiczak, S., Whone, A.L., Hammers, A., Asselin, M.C., Turkheimer, F., Tings, T., Happe, S., Paulus, W., Trenkwalder, C., and Brooks, D.J. (2005). The role of opioids in restless legs syndrome: an [11C]diprenorphine PET study. Brain 128, 906–917.
  • Wager, T.D., Rilling, J.K., Smith, E.E., Sokolik, A., Casey, K.L., Davidson, R.J., Kosslyn, S.M., Rose, R.M., and Cohen, J.D. (2004). Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303, 1162–1167.
  • Wagner, K.J., Sprenger, T., Kochs, E.F., Tolle, T.R., Valet, M., and Willoch, F. (2007). Imaging human cerebral pain modulation by dosedependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology 106, 548–556.
  • Watkins, L.R., Milligan, E.D., and Maier, S.F. (2001). Glial activation: a driving force for pathological pain. Trends Neurosci. 24, 450–455.
  • Wiech, K., Kalisch, R., Weiskopf, N., Pleger, B., Stephan, K.E., and Dolan, R.J. (2006). Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J. Neurosci. 26, 11501–11509.
  • Wilder-Smith, C.H., Schindler, D., Lovblad, K., Redmond, S.M., and Nirkko, A. (2004). Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut 53, 1595–1601.
  • Willoch, F., Schindler, F., Wester, H.J., Empl, M., Straube, A., Schwaiger, M., Conrad, B., and Tolle, T.R. (2004). Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108, 213–220.
  • Wise, R.G., Rogers, R., Painter, D., Bantick, S., Ploghaus, A., Williams, P., Rapeport, G., and Tracey, I. (2002). Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 16, 999–1014.
  • Wise, R.G., Williams, P., and Tracey, I. (2004). Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain. Neuropsychopharmacology 29, 626–635.
  • Witting, N., Kupers, R.C., Svensson, P., and Jensen, T.S. (2006). A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 120, 145–154.
  • Wood, P.B. (2004). Stress and dopamine: implications for the pathophysiology of chronic widespread pain. Med. Hypotheses 62, 420–424.
  • Wood, P.B., Patterson, J.C., 2nd, Sunderland, J.J., Tainter, K.H., Glabus, M.F., and Lilien, D.L. (2007). Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J. Pain 8, 51–58.
  • Woolf, C.J., and Salter, M.W. (2000). Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769.
  • Zambreanu, L., Wise, R.G., Brooks, J.C., Iannetti, G.D., and Tracey, I. (2005). A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114, 397–407.
  • Zubieta, J.K., Heitzeg, M.M., Smith, Y.R., Bueller, J.A., Xu, K., Xu, Y., Koeppe, R.A., Stohler, C.S., and Goldman, D. (2003). COMT val158-met genotype affects mu-opioid neurotransmitter responses toa pain stressor. Science 299, 1240–1243.
  • Zubieta, J.K., Bueller, J.A., Jackson, L.R., Scott, D.J., Xu, Y., Koeppe, R.A., Nichols, T.E., and Stohler, C.S. (2005). Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J. Neurosci.25, 7754–7762
Ver Referências →
Cadastre-se E receba nosso newsletter

Deixe um comentário

O seu endereço de e-mail não será publicado.

CONHEÇA FIBRODOR, UM SITE EXCLUSIVO SOBRE FIBROMIALGIA
CLIQUE AQUI
Preencha e acesse!
Coloque seu nome e e-mail para acessar.
Preencha e acesse!
Você pode baixar as imagens no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
ATENÇÃO!
Toda semana este blog publica dois artigos de cientistas e dois posts inéditos da nossa autoria sobre a dor e seu gerenciamento.
Quer se manter atualizado nesse tema? Não duvide.

Deixe aqui seu e-mail:
Preencha e acesse!
Você pode ver os vídeos no blog gratuitamente preenchendo os dados abaixo:
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o mini-ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas
Preencha e acesse!
Você pode ler o ebook no blog gratuitamente preenchendo os dados abaixo:
Dor Crônica - O Blog das Dores Crônicas